



# Working with command-line systems and GAMIT/GLOBK

T. A. Herring R. W. King M. A. Floyd

Massachusetts Institute of Technology

GPS Data Processing and Analysis with GAMIT/GLOBK/TRACK UNAVCO Headquarters, Boulder, Colorado 10–14 August 2015

Material from T. A. Herring, R. W. King, M. A. Floyd (MIT) and S. C. McClusky (now ANU)

## Quick poll

- Who is using what type of operating system?
  - Linux (brand?)
  - Mac OS X
  - Windows
- Who has installed the software successfully?
- Who has run the example successfully?
- Who has their own data set to process?
- What data do others plan to use?

# Introduction to command-line computing

- Directory structure and navigation
- Using a command line
- Commands to know
- Introduction to shell scripts

# Directory structure and navigation

### Directory structures

- One must be familiar with the layout of files and directories (or "folders")
- Once one has a mental "map" of the directory structure, navigating between directories and finding files is easier
- Think of it as a filing cabinet or family tree



### Directory structures

- Top-level ("root") directory (e.g. "/" on Unix, "C:\" on Windows, etc.)
- User's current working directory is referred to by the shorthand "." [dot]
- The "parent" directory is one level above the current working directory in the hierarchy
- Parent directory is referred to by the shorthand ".." [double dot]



# Changing directory

Once user knows where they are with "mental map" of directory structure, move around. We can move up or down the hierarchy but not sideways.

- cd /
  - Takes user to top-level ("root") directory
- cd 1b
  - Takes user to "1b" directory in first level (move down hierarchy)
- cd 2c
  - Takes user to "2c" directory in second level, below "1b" (move down hierarchy)
- cd 2d
  - Unknown directory. Why?
  - User attempting to move sideways but "2c" not connected directly to "2d".



### Absolute paths

To move back up the hierarchy to "2d", one may explicitly start from the top level, e.g.

- cd /
- cd 1c
- cd 2d

or, combined, simply

- cd /1c/2d
  - Directories are separated by forward slashes



### Relative paths

#### Or:

- Move back up to "1b"
  - cd ..
- Move back up to "/"
  - cd ..
- Move down to "1c"
  - cd 1c
- Move down to "2d"
  - cd 2d
- Or, combined, simply:
  - cd .../.../1c/2d



# Using a command line

### Using a command line

- Basic syntax is:
  - <command> <options> <argument(s)>
- <command> is the program to run, including directory if not included in PATH environment variable (more in a couple of slides...)
- <options> are usually prepended by a dash (e.g. -a)
- <argument(s)> are usually input or output files to work on
- Commands may or may not have options or expect arguments

#### Basic commands

- cd
  - Change directory, for navigating the directory structure
- pwd
  - Print working directory, to know where you are
- 1s
  - List directories and files in current working directory (".") or directory given after command
- Use the "tab" key to auto-complete options

#### **Environment variables**

- A computer must be told information in order to work the way you expect
- Many important settings are kept in "environment variables"
  - \$HOME = user's home directory
  - \$PATH = list of directories containing programs
  - \$SHELL = user's command shell
- printenv
  - Prints information on environment variables

#### Local variables

- To make life easier, one may also set local variables, which may be referred back to at any time
- Useful if one finds the need to write the same thing may times
- sh/bash:
  - var='Hello'
  - Instead of writing "Hello", any reference to \$var will be equivalent to "Hello"
  - var=( Hello Goodbye )
  - Any reference to \${var[0]} will be equivalent to "Hello" and \${var[1]} to "Goodbye"
- csh/tcsh:
  - set var = 'Hello'
  - Instead of writing "Hello", any reference to \$var will be equivalent to "Hello"
  - set var = ( Hello Goodbye )
  - Any reference to \$var[1] will be equivalent to "Hello" and \$var[2] to "Goodbye"

### Commands to know

# Everyday commands

- awk
- grep
- sed
- sort
- paste/join
- tr
- echo/cat

#### awk

Powerful formatted read/write utility, e.g.

- awk '{print \$1,\$2,\$3}' <file>
  - Prints first, second and third white-spaced columns ("fields") from each line of <file>
- awk -v n=3 -F',' '{print \$NF/n}' <csv-file>
  - Prints the last comma-separated field divided by 3 from each line of <csv-file>
- awk 'BEGIN {sum=0}; {sum=sum+\$1}; END
  {printf("%.1f\n",sum/NR)}' <file>
  - Calculate mean of first field: sums first field on each line then divides by number of lines ("records")

#### grep

Pattern-matching command ("general regular expression")

- grep 'hello' <file>
  - Prints all lines from <file> with occurrence of "hello" in them
- grep -ci '^POS S' <file>
  - Prints the number ("-c") of lines that begin ("^") with "POS S" in either upper- or lower-case letters ("-i") in <file>
- grep '^ .\* P\$' <file>
  - Print all lines in <file> that begin ("^") with a space, followed by any number of any characters (".\*"), and end ("\$") with a space followed by P

#### sed

#### Basic text editor

- sed 's/ //g' <file>
  - Substitute ("s") all ("g") instances of a single whitespace with nothing (i.e. delete all whitespace)
- sed '/^ \*\$/d; s/hello/goodbye/1' <file>
  - Delete ("d") all empty lines and substitute the first instance of "hello" with "goodbye" on each line of <file>

#### sort

#### Sorts records

- sort <file>
  - Outputs basic alpha-numerically ordered <file>
- sort -u <file>
  - Same as above but uniquely sorted (i.e. removes duplicate records)
- sort -g -k3 <file>
  - General numeric ordering based on third field of <file>
- sort -uk2.1,2.4 <file>
  - Sort based on first character of second field to fourth character of second field and use this as the basis for the uniqueness test

#### tr

#### **Basic translation**

- tr '[:upper:]' '[:lower:]'
  - Transposes all upper-case letters to lower-case
- tr -d '\r'
  - Deletes all carriage return ("CR") characters (useful for changing a file's line ending from DOS to UNIX format)

### echo/cat

#### Echoes the argument

- echo 'Help!'
  - Prints "Help!"
- cat <file>
  - Reads out entirety of <file>
- cat << END

Help!

#### END

– Same as "echo 'Help!"

#### Redirection

- The output from one command may be written to a file...
  - ">" to overwrite an existing file
  - ">>" to append to an existing file
  - -sort [file] > [sorted file]
- ...or "piped" to another command, effectively forming the second command's input
  - **"|"**
  - grep '^ .\* P\$' [file] | sort > [grep'd and sorted file]

#### Shorthands

- Top-level ("root") directory = "/", e.g.– cd /
- Your home directory = "~" or "\$HOME", e.g.
  - ls ~
- "Links" or "shortcuts" may be created, e.g.
  - ln -s /home/user/gg/10.6 ~/gg
- This creates a link in the user's home directory called "gg" that points to the directory /home/user/gg/10.6
  - Rather than cd /home/user/gg/10.6, one can get to the same place simply with cd ~/gg
  - (This is used in GAMIT/GLOBK scripts and must remain in place!)

#### Useful commands

#### • du

 Disk usage: useful if you want to know how much space your (or others'!) directories are taking up

#### df

 Disk free space: useful if you want to know how much disk space is used and free

#### top

Table Of Processes: useful if you want a real-time overview of running processes

#### ps

 List processes: useful if you want to see what processes are running and their process numbers, commands, etc.

# Introduction to shell scripts

### What is a script?

- Scripts contain a series of commands written in one file and prepended by a "hash-bang"
  - -#!/bin/sh for original Bourne Shell (usually the same as bash on modern systems)
  - #!/bin/bash for Bourne Again Shell
  - -#!/bin/csh for C Shell (usually the same as tcsh on modern systems)
  - #!/bin/tcsh for TENEX C Shell
- The script may then be executed to run all of the commands in sequence as written

### Script example

```
#!/bin/bash
echo -n 'The ISO date is: '
date + '%Y-%m-%dT%H:%M:%S%Z'
echo -n 'The mean of all numbers between 1
and 10 is: '
echo 1 10 | awk 'BEGIN {sum=0; n=0}; {for
(i=\$1; i<=\$2; i++) \{sum=sum+i; n++\}\}; END
{print sum/n}'
echo 'Goodbye!'
```

# Installing GAMIT/GLOBK

#### Sources of prerequisite information

http://web.mit.edu/mfloyd/www/computing/gg/pre/

ftp://guest@chandler.mit.edu/updates/documentation/
GAMIT prerequisites.pdf

http://web.mit.edu/mfloyd/www/computing/mac/gfortran/

http://web.mit.edu/mfloyd/www/computing/mac/gv/

## Separation of tasks

- Source code directory
- Installation directory
- Processing directory

# Source code directory (optional)

### Source code directory

- Users may wish to keep a local copy of source code
  - As backup in case of problems during installation
  - If unable to reconnect to the source code repository (chandler.mit.edu)
- If you wish to do this, keep it separate from where you intend to install GAMIT/GLOBK
  - $-\sim/\mathrm{src}/\mathrm{gg}/10.6$
  - -~/Programs/src/gg/10.6

## Master installation directory

### Master installation directory

- Choose a suitable directory for installing the software
  - Suggested place in home directory, e.g. ~/src/gg, ~/ Programs/gg, etc. (for example, I install GG version 10.6 in /Users/Mike/Programs/gg/10.6)
  - Alternative may be your /usr/local directory, e.g. /usr/local/gg/10.6
  - Take care not to mix source versions, e.g. 10.5 versus 10.6
- Change to this directory to download (or copy) the source code
- This will be the directory that is ultimately linked from your home directory (~/gg)

# Downloading source via FTP

### FTP server

- chandler.mit.edu
  - username: guest
  - password: [changeable]
- Use FTP client, such as ftp or ncftp
- Alternatively, use internet browser
  - ftp://guest@chandler.mit.edu

### Source code

- Change directory to updates/source/
- Need at least:
  - com
  - gamit
  - help
  - kf
  - libraries
  - tables
  - incremental\_updates (if any)
- Also download install\_software
- Depending on your processing strategy, may also need to download grids (e.g. ocean-tide loading, atmospheric loading grids, etc.) from <a href="mailto:ftp://everest.mit.edu/pub/GRIDS">ftp://everest.mit.edu/pub/GRIDS</a>

# **Updates!**

- Incremental updates are made available approximately every month, so please check at least
  - Earth orientation parameters (pole.\* and ut1.\*; or sh\_update\_eop)
  - SVN-PRN translation tables (svnav.dat)
  - Differential code biases (dcb.dat)
  - Leap seconds (leap.sec)
  - Loading grids (ftp://everest.mit.edu/pub/GRIDS)
- Example: 2015-06-30T23:59:60Z leap second



### Documentation

- Top-level "README" file at ftp://guest@chandler.mit.edu/updates/README
- Change directory to updates/documentation/
  - GAMIT/GLOBK prerequisites in GAMIT\_prerequisites.pdf <u>ftp://guest@chandler.mit.edu/updates/documentation/</u> <u>GAMIT\_prerequisites.pdf</u>
  - Introductory GPS material in Intro\_GG.pdf
     ftp://guest@chandler.mit.edu/updates/documentation/Intro\_GG.pdf
  - GAMIT reference manual in GAMIT\_Ref.pdf
     ftp://guest@chandler.mit.edu/updates/documentation/ GAMIT\_Ref.pdf
  - GLOBK reference manual in GLOBK\_Ref.pdf
     ftp://guest@chandler.mit.edu/updates/documentation/ GLOBK Ref.pdf

## Installing GAMIT/GLOBK etc.

## Required tools

Depending on your system, a number of programs may need to be added. One needs:

- A Fortran code compiler
- A C code compiler
- X11 libraries and headers, specifically:
  - libX11.a, libX11.so, libX11.dylib or libX11.la (depending on your system)
  - Xlib.h
- Linux
  - Be sure a C-shell (csh and tcsh) is installed (this is not the case by default with Ubuntu, for instance)
  - X11 libraries and headers may also need to be installed
- Mac
  - Have an Apple ID and download the latest "Command Line Tools for Xcode" (Mac OS X 10.7.3 or later) or "Xcode" (prior to Mac OS X 10.7.3) appropriate to your system from <a href="https://developer.apple.com/downloads/index.action">https://developer.apple.com/downloads/index.action</a>
  - X11 was replaced by XQuartz (http://xquartz.macosforge.org/) for Mac OS X 10.8 (Mountain Lion) and later
- Windows (Cygwin)
  - Devel/make
  - Math/bc
  - Shells/tcsh
  - X11/libX11

## Notes on known problems

- Very new gfortran releases, especially those with a version number ending in 0 (e.g. 4.9.0), often are buggy and produce compilation problems
  - If this is the case, try compiling a program using only the '-O3' flag or revert to an older, stable version of gfortran
- I currently run gfortran 4.9.2 on my laptop with Mac OS X 10.10 (Yosemite) and 4.7.3 on MIT computers with Ubuntu Linux
  - Note Ubuntu's gfortran 4.8 appears to be buggy

# Running install\_software

From the master installation directory, where the source tar-files and install\_software should be copied

- Run ./install software
- As you pass through the installation process, please read the questions, e.g.
  - Searching directories set in libraries/Makefile.config for X11 installation Verified these paths to X11 libs and includes X11LIBPATH: X11INCPATH: Are these paths complete and correct for your system? (y/n)
- If they are not correct, say "n" then install\_software will search or exit and one can then edit libraries/ Makefile.config appropriately

# A note here on permissions

- A computer may read ("r"), write ("w") and/or execute ("x") a
  directory or file
- Each action may be allowed by a user ("u"), group ("g") or others ("o")
- A computer must follow instructions, called "permissions", on if it allowed to do any or all of these for any
- Any file that you want to run as a program must be made "executable"
  - chmod a+x <file>
  - Change moderations (permissions) so executable ("x") permissions are added to <file> for <u>all</u> ("ugo")
- You may find you need to verify that directories and files are readable, writable and/or executable as necessary throughout your UNIX experience

# Potentially necessary edits

libraries/Makefile.config is the main control file for the installation process

#### Check:

- X11LIBPATH (path to libX11)
- X11INCPATH (path to Xlib.h)
- MAXSIT (max. number of sites to process simultaneously)
- MAXSAT (do not change)
- MAXATM (max. atmospheric estimates per session)
- MAXEPC (max. epochs per session, e.g. 24 hours at 30 s interval = 2880 measurement epochs)
- OS block (usually no need to change)

# Setting environment variables

sh/bash (e.g. in ~/.bash\_profile or ~/.profile):

```
gg='/usr/local/gg/10.6'
PATH="$gg/com:$gg/gamit/bin:$gg/kf/bin:$PATH" && export PATH
HELP_DIR="$gg/help/" && export HELP_DIR
INSTITUTE='MIT' && export INSTITUTE
```

csh/tcsh (e.g. in ~/.cshrc):

```
set gg = '/usr/local/gg/10.6'
setenv PATH "$gg/com:$gg/gamit/bin:$gg/kf/bin:$PATH"
setenv HELP_DIR "$gg/help/"
setenv INSTITUTE 'MIT'
```

### Additional software

- Generic Mapping Tools (GMT) (<a href="http://gmt.soest.hawaii.edu/">http://gmt.soest.hawaii.edu/</a>)
  - Required for plotting scripts to work
  - Scripts in com/ use GMT 5
  - Prepend com\_preGMT5/ to \$PATH if using GMT 4
    - These scripts are no longer updated, so switch to GMT 5!
- Tom's GGMatlab tools (<a href="http://www-gpsg.mit.edu/~tah/GGMatlab/">http://www-gpsg.mit.edu/~tah/GGMatlab/</a>)
  - tsview
  - velview

### **GMT**

Install netCDF (<a href="http://www.unidata.ucar.edu/downloads/netcdf/current">http://www.unidata.ucar.edu/downloads/netcdf/current</a>)
first:

- If unable to install via, e.g. Ubuntu Software Manager then...
- Download latest source code to suitable directory (e.g. ~/src)
  - wget http://www.unidata.ucar.edu/downloads/netcdf/ ftp/netcdf-4.3.0.tar.gz
- Expand tar-file
  - tar xvfz netcdf-4.3.0.tar.gz
- Change directory and configure without netcdf-4 support (unless you have required HDF5 and zlib installed) and install in /usr/local
  - cd netcdf-4.3.0
  - ./configure --disable-netcdf-4
- Run the usual make sequence to install in /usr/local (configure's default)
  - make
  - make check
  - sudo make install

### **GMT**

- Download and execute install\_gmt.sh
   <a href="mailto:(http://gmt.soest.hawaii.edu/gmt/install\_gmt.sh">(http://gmt.soest.hawaii.edu/gmt/install\_gmt.sh</a>)
- Answer the questions appropriately (most defaults settings are adequate)
- Default configuration installs netCDF in /usr/ local/lib, /usr/local/include, etc. (previous slide)
- Suggested installation directory for GMT is /usr/ local/GMTX.Y.Z (where X.Y.Z is currently 4.5.13 or 5.1.2)
- Be sure to follow the instructions regarding setting environment variables (PATH, MANPATH)

## Processing directories

# Processing directory

- The processing directory will not have the same structure as the master installation directory
- Choose a different location, do not process in your master installation directory
- We will, however, be copying or linking to the master installation tables (via symbolic link or "shortcut" ~/gg/tables)

## Example continuous GPS structure



# Example survey GPS structure

